
Developer Companion: A Framework to Produce
Secure Web Applications

Mamdouh Alenezi
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia

malenezi@psu.edu.sa

Yasir Javed
College of Computer & Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia

yjaved@psu.edu.sa

Abstract—Software engineering and development is a very
complex endeavor that contends with limited resources, poten-
tially causing software to behave in an unexpected manner.
Software developers often lack secure coding skills and its a
major reason behind development of insecure web applications. In
this work, we propose a developer companion as an integrated
framework that can be integrated to any IDE to educate and
help developers produce more secure code. This framework
can be adopted and can be made more intelligent by focusing
on historical security flaws in the development team. expert
developers practices to overcome the security vulnerabilities.

Keywords—web applications, source code, security, static anal-
ysis

I. INTRODUCTION

Software development and engineering is a very complex
endeavor that contends with limited resources [1], [2], poten-
tially causing software to behave in an unexpected manner.
Software developers often lack secure coding skills and its
a major reason behind development of insecure web applica-
tions [3]. The most worrisome class of these faults can be
exploited by attackers. These faults are considered security
vulnerabilities [4] that are recurrent, causing companies to
struggle to allocate resources for their management [5]. The
practice of building secure software that functions properly
under unwanted attacks is called software security.

Web applications nowadays have moved from static infor-
mation about companies to a complete communication channel
by providing numerous services on which clients can connect
[6]. Introduction of web services and data over the web
has increased the number of attacks on them thus a small
security flaw in web application will have a bigger negative
impact. Services that are offered by web application may range
from normal purchase information to mission critical tasks or
extremely sensitive information.

Development cost in terms of money and time increase
whenever changes are required to be done in software at later
stages [7]. Thus it is important to identify major vulnerabilities
and fix them at earlier stage of development. Consequently,
developers have a duty to attempt to discover weaknesses
as early as possible. However, the size and complexity of
the code bases and shortage of developers experience may
complicate software weaknesses discoveries. Finding vulnera-
bilities in web applications can be done by code auditing (code

inspection or reviews), static Analysis, dynamic analysis, and
security testing [8], [9].

From 1988 to 2016 total vulnerabilities recorded by Na-
tional Vulnerability Database (NVD) are 72,855 out of which
6,488 are just reported in 2015. Probable security vulnerabili-
ties can be detected using static analysis tools. These tools also
provide details about each flaw like which line has flaw, type
of flaw, what possible vulnerability can cause etc. Based on
several studies, it was expected that 90 percent of security
incidents are results of exploiting defects in the design or
code of commonly used software [10]. The main purpose of
static analysis tools is to find coding errors before they can
be exploited. Static analysis is predominantly a good fit to
security since several security issues happen in places that hard
to reach and difficult to exercise by running the code. While
many tools and research proposed recently have attempted to
address several security exploits, we argue that a critical aspect
to avoid these security problems is to target developers by
educating and assisting them with developing secure code.

One of the responsibilities of software developers is to
determine non-functional requirements, such as security and
performance. Educating developers on security in order to help
them build elasticity in applications to protect them against
attacks and to prioritize security threats and handle them before
designing applications. Constructing secure software needs a
great deal of security education. Many software developers
are not aware and equipped with enough security education.
In addition, many programming books do not teach how to
write secure programs [11].

Detecting vulnerabilities and finding precarious flaws in
code can be classified in two main approaches: white-box
analysis and black-box testing [12]. White-box analysis ex-
amines the code without the need of executing it. This can
be done manually through code inspection and reviews or
automatically through security static analysis [12]. Static anal-
ysis is an automated process to assess code without executing
it. Code review methods, both manual and automated, try to
find security issues before releasing the software. Black-box
testing analyzes program execution externally. In other words,
it compares the software execution outcome with expected
results.

Code review needs knowledge of code as practitioners,
with slight experience will not do a good job during a code
review. The code review should be done by experienced senior

developers while equipping them with modern source code
analysis tools. There is no silver bullet solution to ensure
secure coding. However, code review provides great insights
in finding security irregularities. The remainder of the paper
is organized as follows: Section II discusses the related work,
Section III discusses the collected data and the empirical study,
Section IV explains the suggested framework, and Section V
concludes the paper.

II. RELATED WORK

Static analysis tools usually tend to produce false positive
reports and it is one of the major critiques against these tools
[13]. However, the vulnerabilities found by these tools are
found to be reliable as reported by Walden and Doyle [14] as
they reported that vulnerabilities reported by Fortify SCA tools
are highly correlated to NVD vulnerabilities. Furthermore,
Gegick et al. [15], [16] showed the correlation of actual
vulnerabilities and warnings found by static analysis tools are
highly correlated. A large scale study conducted by Zheng et
al. [17] at industry showed the importance and effectiveness
of using static analysis to find flaws that can lead to security
vulnerabilities. We conclude from previous studies that static
analysis tool can be used to give some insights about the source
code problems. The analysis results should be investigated in
order to educate software developers and managers.

Previous research evaluated different techniques and their
capabilities in detecting vulnerabilities [18], [13]. Manual code
reviews and black box testing can be both used to find the
vulnerabilities where manual code reviews can find more
vulnerabilities but it will take a lot of time. Both techniques
complement each other as explained by Finifter and Wagner
[18]. Austin and Williams [13] found that there is no single
technique that can detect all vulnerabilities. After exploring the
techniques like manual and automated penetration testing and
static analysis, they found that automated penetration testing
are better than other two techniques in terms of vulnerabilities
detected. Clark et al. [19] focused on effect of legacy code on
vulnerabilities and found out that it is major player in terms
of vulnerabilities found in software systems.

III. EMPIRICAL STUDY

To evaluate the current status of the security of several web
applications, we conducted an empirical study on the source
code of seven open source web software systems from different
domains, namely, Crawler4j, Elasticsearch, WebGoat, Friki,
Gestcv, Jfinal, and Jpetstore. We provide some information
about these systems. Table I summarizes the collected systems.
Find Security Bugs version 1.4.6 was used to find security
problems. This plugin was integrated with NetBeans. It is a
FindBugs plugin for security audits of Java web applications. It
can detect 86 different vulnerability types with over 200 unique
signatures with extensive references for each bug patterns with
references to OWASP Top 10 and CWE.

Crawler4j 1 is an open source application for web-crawling
that can crawl the web in few minutes using multi-threading.
It is able to crawl almost 200 Wikipedia pages per second and
waiting for 200 milliseconds between each steps. It is also
possible to do resume-able crawling.

1https://github.com/yasserg/crawler4j

Elasticsearch 2 is a distributed search engine built for cloud
using RESTful web services. It supports multiple indexing and
multiple tenant cloud. It has real time search and analytical
capabilities. It can allow full text search as well as persistent
where each document changes are recorded. It has JSON based
document store.

WebGoat 3 is a deliberately designed web application for
security testing maintained by OWASP. It is also designed to
teach security and penetration testing system and common se-
curity flaws. It can train in cross-site scripting, access control,
parameter manipulation, blind SQL injection, web services,
numeric SQL injection using realistic teaching environment. It
is platform independent environment that uses Java VM. When
you run the webgoat it is highly probable that your machine
may be hacked.

Friki 4 is a wiki like application built using Java and can be
deployed on any modern servlet. It has some common features
like wiki and its common markup tag support. It offers an easy
customizable solution that can be loaded dynamically without
the need of restarting the server again.

Gestcv 5 is a java based application used to manage Cur-
riculum Vitae. It allows creation of CV and allows searching
of its contents. It is also based on Struts, Spring and Hibernate.
It is built on MVC architecture. It uses MySQL database, and
allows persistent development.

JFinal 6 is a complete framework written in Java language
and it uses RESTful web services. It allows easy development
without writing large amount of code for writing RESTful web
services. Its built on MVC architecture and require no configu-
rations as uses XML. Java development and deployment doesnt
need server to be restarted and is automatically loaded. Plugins
can be scaled and provide struts support as well as supports
multi-view.

JpetStore 7 is completely re-written web application pet
store that was originally made by Microsoft. It is written in
Java and overcomes the shortcoming of its original version.
It is based on Struts with color coding conventions to ease
programmer for writing codes. Presentation later is based on
MVC architecture and there is HTML in database making it
completely independent.

TABLE I. SUMMARY OF THE SYSTEMS

Project Version No. of Files LOC
Crawler4j 4.2 43 7114
Elasticsearch 6.0.1 3865 616000
WebGoat 7.0.1 35 8474
Friki 2.1.1 21 1843
Gestcv 1.0.0 119 11524
JFinal 2 14 2379
JpetStore 6 116 25820

We report the results of running FindBugs on these ap-
plications. We report two types of bugs, namely Malicious

2https://github.com/elastic/elasticsearch
3https://github.com/WebGoat/WebGoat
4https://sourceforge.net/projects/friki/files/friki/
5https://sourceforge.net/projects/gestcv/
6http://www.jfinal.com/
7https://sourceforge.net/projects/ibatisjpetstore/

Code Vulnerability (MCV) and Security code. Malicious code
vulnerability is a code that can be altered or exploited by
other code. It can be in form of worms, viruses, Trojan horses
or other programs that can exploit other security parameters.
There are numerous Malicious code vulnerabilities like (1)
exposing internal representation to reference object that pose
a threat to security if that object is accessed through different
purpose, (2) Usually the field that has last results should be
declared is final but is missed and poses a threat of being
used by malicious code to change the value. (3) Returning the
mutable object as reference poses a serious security threat and
can be used by malicious code, (4) A field is defined as static
but not protected can be accessed by malicious code and can
be changed.

Security code gaps means finding errors that might impact
the application security by exploiting security vulnerabilities. It
can be in form of malicious data injection or manipulating the
applications using malicious data. There are couple of security
categories that should be checked as these provide open threats
to any web application. Most common security threats are (1)
Carriage return and line feed or HTTP response splitting is a
usual way programmers adapt to work on response returned
but if hacker can plunge the response through injections it can
be used to control how web functions will act. (2) Use of
predictable random generator to calculate the random number
may result in finding the predicted number and can be used to
find the password sent or any other secret value, (3) Usually a
file is opened to read or write where filename is sent as input
and can result in revealing the full path of location of file (4)
Usually programmer pass JDBC connection string as prepared
statement unsafely can result in SQL injection attack, (5) Use
of regular expression in a variable unprotected will result in
plugging a big regular expression to compile and will result
in Denial of service as program will get busy in parsing the
variable for large amount of time.

Figures 1 and 2 show the number of security issues found
in these applications. These results clearly show that these
web application have a lot security problems. These security
issues can be addressed at early stages of these applications
development. We believe that educating developers and giving
them hints while they are developing the application will result
in more secure applications. Developers and test mangers dont
have to wait until they finish to find out if there is a security
issue or not in the code. Learning from previous security errors
can be a great aid in preventing them from happening in the
future. While many tools and research proposed recently have
attempted to address several security exploits, we argue that
a critical aspect to avoid these security problems is to target
developers by educating and assisting them with developing
secure code.

IV. SUGGESTED FRAMEWORK

Several organizations for example MITRE [20], SANS
Institute [21] and OWASP [22] have highlighted the sig-
nificance of educating students, developers, managers about
security issues. These organizations do their part by frequently
publishing common programming errors. Our study supports
the intuition that web developers usually fail in securing their
web applications. The outdated approach of testing applica-
tions after they are finished proved to be problematic. We

0 20 40 60 80 100 120

May expose internal representation by…

Field isnt final but should be

May expose internal representation by…

Field should be package protected

Public static method may expose internal…

Field should be both final and package…

Field isnt final and cant be protected from…

of Malicious code vulnerabilites

Fig. 1. MCV found in selected web applications.

Fig. 2. Security gaps found in selected web applications.

believe that educating developers and giving them hints while
they are developing the application will result in more secure
applications. Developers and test mangers dont have to wait
until they finish to find out if there is a security issue or not
in the code. Learning from previous security errors can be a
great aid in preventing them from happening in the future.

Software security researchers have measured vulnerabilities
using both databases of reported vulnerabilities such as the
National Vulnerability Database (NVD) and static analysis
results. In our suggested framework we make use of both
approaches. We utilize the valuable knowledge in vulnerability
repositories such as Common Weakness Enumeration (CWE)
and National Vulnerability Database (NVD), which is con-
tributed by software security experts around the world, and
is available for public use for free. In Figure 3, we explain
our suggested framework. The framework can be integrated
with any integrated development environment (IDE). The idea
is to enable developers and testers to find security problems
in the code while the system is in implementation. After
a piece of code has been written, the framework will run
that code on several static analysis tools, check the code
in two available databases, CWE and NVD, and eventually
give a recommendation based on the collected data from
three different sources. This will give an instant feedback to
the developer about the written code. It will make him/her
confident about his code. It will also educate him/her in the
go since these recommendations will help him/her learn a lot
about code security problems.

For the static analysis tools, in the framework, several

NVD Database

CWE Database

Static Analysis Tools

Recommendations

Fig. 3. The Suggested Framework.

tools can be integrated, namely FindBugs8, PMD9, Yasca10,
and LAPSE11. The Static Code Analysis Module contains
static analysis tool(s) which scan the given code repository
to find vulnerabilities. These tools are open source and can
be integrated with several available IDEs. In the suggested
framework, a filtered summary of these tools can be presented
as recommendations for developers to educate them and to help
them avoid such problems in their source code. The proposed
framework is based on the static analysis of code written
by software developers. Static analysis tools report suspicious
security vulnerabilities found in source code. These results can
be utilized for recommending issues and best practices to the
software developers who contributed to writing those class and
components, hence improving their software security skills.

Numerous kinds of security vulnerabilities can take place
in code, design, or architecture. The security community uses
Common Weakness Enumerations (CWE) to differentiate se-
curity vulnerabilities. For the Common Weakness Enumeration
(CWE), the list is available in multiple machine-readable
formats including html, XML, and PDF. The CWE Schema
is also provided for processing the complete CWE List.
The framework can check the developer code against these
common problems in source code again to educate them and
to help them avoid such problems in their source code. CWE
is a software community project that targets creating and
maintain a catalog of software weaknesses and vulnerabilities.

8http://find-sec-bugs.github.io/
9http://pmd.github.io/
10http://scovetta.github.io/yasca/
11https://code.google.com/archive/p/lapse-plus/

The goal of the project is to identify, fix, and prevent those
vulnerabilities.

NVD complete database about vulnerabilities can be down-
loaded from their website in unified XML format. Each XML
document contains the security vulnerabilities found with a
description about them. Our designed framework can check the
developer code against these common problems in source code
again to educate them and to help them avoid such problems
in their source code.

These three source of recommendations will be aggregated
and shown to the developers. Later on, some intelligence can
be integrated to the framework as well. Based on the historical
errors and flaws, the framework will adopt and focus on these
specific security issues.

V. CONCLUSION

It is observed that selected projects have common vulner-
abilities in all types of security flaws, malicious code and
security code. These vulnerabilities are mostly inserted due
to developers’ non awareness or bad programming practice.
The vulnerabilities from selected projects also reveals that
they have security and malicious code vulnerabilities making
them more prone to attacks. The suggested framework will
allow developers to produce more secure code and help them
learn about best practices in developing web applications. The
framework will also tackle these issues at early stages before
even going to testing which will reduce the cost of software
development.

REFERENCES

[1] M. Alenezi and F. Khellah, “Evolution impact on architecture stability
in open-source projects,” International Journal of Cloud Applications
and Computing (IJCAC), vol. 5, no. 4, pp. 24–35, 2015.

[2] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC Press, 2014.

[3] I. Abunadi and M. Alenezi, “An empirical investigation of security
vulnerabilities within web applications,” Journal of Universal Computer
Science, vol. 22, no. 4, pp. 537–551, 2016.

[4] M. Bishop, Introduction to computer security. Addison-Wesley Boston,
MA, 2005.

[5] M. Nyanchama, “Enterprise vulnerability management and its role
in information security management.” Information Systems Security,
vol. 14, no. 3, pp. 29–56, 2005.

[6] M. Alenezi and I. Abunadi, “Evaluating software metrics as predictors
of software vulnerabilities,” International Journal of Security and Its
Applications, vol. 9, no. 10, pp. 231–240, 2015.

[7] M. Alenezi and K. Magel, “Empirical evaluation of a new coupling
metric: Combining structural and semantic coupling,” International
Journal of Computers and Applications, vol. 36, no. 1, pp. 34–44, 2014.

[8] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis.” in Usenix Security, vol. 2013, 2005.

[9] T. Lee, G. Won, S. Cho, N. Park, and D. Won, “Detection and
mitigation of web application vulnerabilities based on security testing,”
in IFIP International Conference on Network and Parallel Computing.
Springer, 2012, pp. 138–144.

[10] S. Chung, L. Hansel, Y. Bai, E. Moore, C. Taylor, M. Crosby, R. Heller,
V. Popovsky, and B. Endicott-Popovsky, “What approaches work best
for teaching secure coding practices,” in Proceedings of the 2014 HUIC
Education and STEM Conference, 2014.

[11] A. S. Sodiya, S. A. Onashoga, and O. B. Ajayi, “Towards building
secure software systems,” Issues in Informing Science and Information
Technology, vol. 3, pp. 635–646, 2006.

[12] N. Antunes and M. Vieira, “Defending against web application vulner-
abilities,” Computer, vol. 45, no. 2, pp. 0066–72, 2012.

[13] A. Austin and L. Williams, “One technique is not enough: A comparison
of vulnerability discovery techniques,” in 2011 International Symposium
on Empirical Software Engineering and Measurement. IEEE, 2011,
pp. 97–106.

[14] J. Walden and M. Doyle, “Savi: Static-analysis vulnerability indicator,”
IEEE Security & Privacy, vol. 10, no. 3, pp. 32–39, 2012.

[15] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Prioritizing software
security fortification throughcode-level metrics,” in Proceedings of the
4th ACM workshop on Quality of protection. ACM, 2008, pp. 31–38.

[16] M. Gegick, P. Rotella, and L. Williams, “Predicting attack-prone
components,” in 2009 International Conference on Software Testing
Verification and Validation. IEEE, 2009, pp. 181–190.

[17] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” IEEE transactions on software engineering, vol. 32, no. 4,
pp. 240–253, 2006.

[18] M. Finifter and D. Wagner, “Exploring the relationship between web
application development tools and security,” in USENIX conference on
Web application development, 2011.

[19] S. Clark, S. Frei, M. Blaze, and J. Smith, “Familiarity breeds con-
tempt: The honeymoon effect and the role of legacy code in zero-day
vulnerabilities,” in Proceedings of the 26th annual computer security
applications conference. ACM, 2010, pp. 251–260.

[20] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011
cwe/sans top 25 most dangerous software errors,” Common Weakness
Enumeration, vol. 7515, 2011.

[21] R. Dhamankar, M. Dausin, M. Eisenbarth, J. King, W. Kandek, J. Ull-
rich, E. Skoudis, and R. Lee, “The top cyber security risks,” SANS
Institute, 2009.

[22] T. OWASP, “10: Ten most critical web application security risks,” 2013.

